Sistem Persamaan Linear dan Kuadrat

Selasa, 25 Mei 2010

Sistem Persamaan Linear dan Kuadrat

Sistem Persamaan Linear dan Kuadrat (SPLK) disusun oleh sebuah persamaan linear dan sebuah persamaan kuadrat yang memiliki dua variabel. SPLK terdiri dari 2 jenis, yaitu: (1) SPLK Eksplisit dan (2) SPLK Impilsit.
(1) SPLK Eksplisit


(2) SPLK Implisit


Sistem Persamaan Linear dan Kuadrat Eksplisit

SPLK Eksplisit
Bentuk umum SPLK eksplisit ditulis sebagai berikut:
dengan a, b, p, q, dan r merupakan bilangan-bilangan real.

Langkah-langkah untuk menentukan himpunan penyelesaian SPLK Eksplisit adalah sebagai berikut:
  1. Substitusikan persamaan linear y = ax + b ke persamaan kuadrat y = px2 + qx + r, diperoleh
          ax + b = px2 + qx + r
      px2 + (q - a)x + (r - b) = 0, dengan menggunakan pemfaktoran atau rumus ABC diperoleh nilai-nilai x (jika ada).

  2. Nilai-nilai x yang didapat dari langkah (1) disubtitusikan ke persamaan y = ax + b sehingga diperoleh nilai y. Pasangan nilai (x, y) merupakan himpunan penyelesaian SPLK.
Banyak anggota himpunan penyelesaian pada persamaan kuadrat px2 + (q - a)x + (r - b) = 0 dapat ditentukan dengan menggunakan diskriminan yang dinotasikan dengan D, dimana D = b2 - 4ac.
Diskriminan dari px2 + (q - a)x + (r - b) = 0 adalah D = (q - a)2 - 4p(r - b).
Jika D > 0 maka SPLK mempunyai dua anggota himpunan penyelesaian.
Jika D = 0 maka SPLK mempunyai satu anggota himpunan penyelesaian.
Jika D < 0 maka SPLK tidak mempunyai anggota himpunan penyelesaian.



Pasangan nilai (x, y) yang merupakan himpunan penyelesaian SPLK dapat ditafsirkan secara Geometri sebagai koordinat titik potong antara garis y = ax + b dengan parabola y = px2 + qx + r. Kedudukan garis terhadap parabola dapat ditentukan dengan nilai diskriminan D = (q- a)2 - 4p(r - b).
Jika D > 0 maka garis memotong parabola di dua titik yang berlainan.
Jika D = 0 maka garis memotong parabola tepat di satu titik atau dikatakan garis menyinggung parabola
Jika D < 0 maka garis tidak memotong maupun menyinggung parabola.

Contoh 1

Tentukan banyak anggota himpunan penyelesaian SPLK di bawah ini.

a. y = x + 7
    y = x2 + 4x - 12
   Jawab :
   Substitusikan persamaan y = x + 7 ke persamaan y = x2 + 4x - 12 diperoleh
                  x + 7 = x2 + 4x - 12
   x2 + 3x - 19 = 0
                    D = 32 - 4(1)(-19)
                    D = 9 + 76
                    D = 85
                           Karena D > 0, jadi SPLK mempunyai 2 anggota himpunan penyelesaian.
                         
b. y = -2x + 5
    y = x2 + 6x + 21
    Jawab :
    Substitusikan persamaan y = -2x + 5 ke persamaan y = x2 + 6x + 21 diperoleh
                -2x + 5 = x2 + 6x + 21
   x2 + 8x + 16 = 0
                     D = 82 - 4(1)( 16)
                     D = 64 - 64
                    D = 0
   Karena D = 0, jadi SPLK mempunyai 1 anggota himpunan penyelesaian.

c. y = 3x - 4
    y = x2 + 6x + 9
    Jawab : 
   Substitusikan persamaan y = 3x - 4 ke persamaan y = x2 + 6x + 9 diperoleh
                   3x - 4 = x2 + 6x + 9
     x2 + 3x + 13 = 0
                      D = 32 - 4(1)( 13)
                      D = 9 - 52
                      D = -43
   Karena D < 0, jadi SPLK tidak mempunyai anggota himpunan penyelesaian.


Contoh 2

Tentukan himpunan penyelesaian SPLK y = 2x + 8
 y = x2 + 4x
Jawab:
Substitusikan persamaan y = 2x + 8 ke persamaan y = x2 + 4x, diperoleh
              2x + 8 = x2 + 4x                                 
    x2 + 2x - 8 = 0
(x + 4)(x - 2) = 0
x = -4 atau x = 2
    x = -4   y = 2(-4) + 8 = 0
    x = 2    y = 2(2) + 8 = 12
Himpunan penyelesaian ={(-4, 0), (2, 12)}


Contoh 3

Diketahui persamaan garis y = x + 2 dan persamaan parabola y = x2 - 2x - 8.
Tentukan: a. koordinat titik potong antara garis dan parabola
                 b. sketsa grafiknya.
Jawab:
a. Substitusikan persamaan garis y = x + 2 ke persamaan parabola y = x2 - 2x - 8, diperoleh
                    x + 2 = x2 - 2x - 8                            
       x2 - 3x - 10 = 0
     (x + 2)(x - 5) = 0
      x = -2 atau x = 5
         x = -2   y = -2 + 2 = 0
         x = 5    y = 5 + 2 = 7     
         Koordinat titik potong antara garis dan parabola adalah (-2, 0) dan (5, 7)

b. Grafik
    y = x + 2
x
0
-2
 y
2
0
                                                           
    y = x2 - 2x - 8
x
0
-2 atau 4
1
y
-8
0
-9

pustekkom depdiknas © 2008

Sistem Persamaan Linear dan Kuadrat Implisit

Suatu persamaan dua variabel x dan y dikatakan berbentuk eksplisit apabila persamaan tersebut dapat dinyatakan dalam bentuk y = f(x) atau x = f(y).
Contoh: (1) x = 5y + 20                                    (3) y = x2 +2x - 15   
              (2) y = 4x - 8                                       (4) x = y2 + 8y +12

Suatu persamaan dua variabel x dan y dikatakan berbentuk implisit apabila persamaan tersebut tidak dapat dinyatakan dalam bentuk y = f(x) atau x = f(y). Persamaan implisit dinyatakan dalam bentuk f(x,y)
Contoh: (1) x2 + y2 + 25 = 0                              (3) x2 - 6xy + y2 + 8y = 0   
              (2) x2 + y2 - 4x +  6y = 0                      (4) x2 + 2xy + y2 - 10y + 9 = 0

Bentuk umum SPLK implisit ditulis sebagai berikut:


Dengan a, b, c, d, e, f, p, q, r merupakan bilangan-bilangan real.


A. Sistem Persamaan Linear dan Kuadrat Implisit yang Tidak Dapat Difaktorkan

Penyelesaian SPLK implisit yang tidak difaktorkan adalah sebagai berikut.
  1. Pada persamaan linear px + qy + r = 0, nyatakan x dalam y atau y dalam x.
  2. Substitusikan x atau y dari persamaan linear ke persamaan kuadrat, sehingga diperoleh persamaan kuadrat dalam x atau y.
  3. Selesaikan persamaan kuadrat dari langkah (2) sehingga diperoleh nilai x atau y, kemudian substitusikan nilai x atau y ke persamaan linear.
Contoh 1
Tentukan himpunan penyelesaian SPLK
Jawab:
x + y - 4 = 0 y = -x + 4
Substitusikan y ke persamaan x2 + y2 - 10 = 0
           x2 + (-x + 4)2 - 10 = 0
  x2 + x2 - 8x + 16 - 10 = 0
                 2x2 - 8x + 6 = 0
                   x2 - 4x + 3 = 0
                (x - 1) (x - 3) = 0
   x = 1 atau x = 3
       x = 1 y = -1 + 4 = 3
       x = 3  y = -3 + 4 = 1
         
Jadi, himpunan penyelesaian = {(1, 3) atau (3, 1)}          
         
         
Contoh 2
Tentukan himpunan penyelesaian SPLK
Jawab:
x - y = 5 x = y + 5
Substitusikan x ke persamaan x2 + y2 - 2x + 4y + 1 = 0
            (y + 5)2 + y2 - 2(y + 5) + 4y + 1 = 0
y2 + 10y + 25 + y2 - 2y - 10 + 4y + 1 = 0
                                   2y2 + 12y + 16 = 0
                                         y2 + 6y + 8 = 0
                                     (y + 2) (y + 4) = 0
    y = -2 atau y = -4
        y = -2 x = -2 + 5 = 3
        y = -4 x = -4 + 5 = 1
Jadi, himpunan penyelesaian = {(1, -4), (3, -2)}.


B. Sistem Persamaan Linear dan Kuadrat Implisit yang Dapat Difaktorkan

Penyelesaian SPLK implisit yang dapat difaktorkan adalah sebagai berikut.
  1. Ubah persamaan ax2 + by2 + cxy + dx + ey + f = 0 menjadi bentuk (mx + ny)2 - s2 = 0 selanjutnya diubah menjadi {(mx + ny) + s}{(mx + ny) -s} = 0, sehingga diperoleh
    mx + ny + s = 0 atau mx + ny -s = 0
  2. Eliminasikan persamaan px + qy + r = 0 dengan mx + ny + s = 0 dan mx + ny -s = 0 sehingga diperolah nilai x dan y.
Contoh
Tentukan himpunan penyelesaian SPLK

Jawab:
           x2 - 6xy + 9y2 - 36 = 0
                 (x - 3y)2 - 36 = 0
   (x - 3y + 6)(x - 3y - 6) = 0
   x - 3y + 6 = 0 atau x - 3y - 6 = 0
   x - 3y = -6  atau x - 3y = 6
Eliminasikan x + y = 2 dengan x - 3y = -6  dan x - 3y = 6

   x + y = 2
  x - 3y = -6
       4y = 8             x + 2 = 8
         y = 2                   x = 0

   x + y = 2
  x - 3y = -6
       4y = 8             x + 2 = 8
         y = 2                   x = 0

Jadi, himpunan penyelesaian = {(0, 2), (3, -1)}



Simulasi









@ http://www.e-dukasi.net

Pembaca Lain Juga Menyukai artikel di bawah ini :

1 comments:

Anonim mengatakan...

gan mohon bantuannya, buat selesain soal ini gimana :)

The quadratic function which takes the value 41 at χ = -2 and the value 20 at χ = 5 and is minimized at χ = 2 is
y= Ax^2- Bx + C
berapa nilai A,B,C dan nilai Y saat X=2 ?

Poskan Komentar

Saran dan Kritik sangat di butuhkan untuk meningkatkan kualitas blog ini di masa depan

cari artikel cepat

SPONSOR

komentar terbaru

Kirim Artikel ke email anda

Masukkan alamat Email Anda, dan dapatkan update terbaru dari blog duniaedukasi.net

Delivered by FeedBurner

bank soal

Mari Bertukar Link